Methane production by mixed ruminal cultures incubated in dual-flow fermentors.
نویسندگان
چکیده
This study evaluated the effects of dilution rate and forage-to-concentrate ratio on gas production by rumen microbes. Continuous cultures were used to monitor methane production at three liquid dilution rates (3.2, 6.3, or 12.5%/h) and three forage-to-concentrate ratios (70:30, 50:50, or 30:70). Filtered ruminal contents were allowed 6 d of adaptation to diets followed by 7 d of data collection. Forage consisted of pelleted alfalfa and the concentrate mix included ground corn, soybean meal, and a mineral and vitamin premix. The experiment was replicated in a split-plot design. Total volatile fatty acid production averaged 58.0 mmol/d and was not affected by treatment. Molar proportion of acetate increased with increasing forage-to-concentrate ratio. Molar proportion of propionate tended to decrease at dilution rate of 12.5%/h and increased with the medium and low forage-to-concentrate ratio. Culture pH tended to be greater at a dilution rate of 12.5%/h. Methane production that was calculated from stoichiometric equations was not affected by treatments. However, methane production based on methane concentration in fermentor headspace resulted in an interaction effect of treatments. Stoichiometric equations underestimated methane output at higher dilution rates and with high forage diets. Total diet fermentability was lowest at dilution rate of 3.2%/h. Increasing dilution rates increased microbial yield; increasing the proportion of concentrate improved microbial efficiency. Dilution rate and forage-to-concentrate ratio altered the partition of substrate by microbes. Methane production based on actual concentrations differed from values estimated using stoichiometry of end-product appearance.
منابع مشابه
Ruminal Fermentation of Anti-Methanogenic Nitrate- and Nitro-Containing Forages In Vitro
Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA-, or NPOH-containing forages effec...
متن کاملEffect of feeding corn, hull-less or hulled barley on fermentation by mixed cultures of ruminal microorganisms.
Increased demands for corn grain warrant the evaluation of alternative grain types for ruminant production systems. This study was conducted to determine the effects of hulled and hull-less barley (Hordeum vulgare L.) cultivars compared with corn (Zea mays L.) as an alternative grain type on fermentation in cultures of mixed ruminal microorganisms. Three continuous fermentors were fed 14 g of d...
متن کاملEffect of dietary monensin or chlortetracycline on methane production from cattle waste.
Wastes from feedlot cattle fed finishing diets containing either monensin, chlortetracycline, or no antibiotic were investigated as substrates for methane production. We used continuously mixed anaerobic fermentors with 3-liter working volumes at 35 and 55 degrees C; these fermentors were fed once per day. Within a few days after waste from animals fed monensin was added, the volume of methane ...
متن کاملIn vitro methane formation and carbohydrate fermentation by rumen microbes as influenced by selected rumen ciliate species.
Ciliate protozoa contribute to ruminal digestion and emission of the greenhouse gas methane. Individual species of ciliates co-cultured with mixed prokaryote populations were hypothesized to utilize carbohydrate types differently. In an in vitro batch culture experiment, 0.6 g of pure cellulose or xylan was incubated for 24 h in 40-mL cultures of Entodinium caudatum, Epidinium ecaudatum, and Eu...
متن کاملEffects of the methane-inhibitors nitrate, nitroethane, lauric acid, Lauricidin and the Hawaiian marine algae Chaetoceros on ruminal fermentation in vitro.
The effects of several methane-inhibitors on rumen fermentation were compared during three 24h consecutive batch cultures of ruminal microbes in the presence of nonlimiting amounts of hydrogen. After the initial incubation series, methane production was reduced greater than 92% from that of non-treated controls (25.8+/-8.1 micromol ml(-1) incubation fluid) in cultures treated with nitroethane, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of dairy science
دوره 87 1 شماره
صفحات -
تاریخ انتشار 2004